The generator matrix

 1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  1  X  1  1  0  1  1  1  3  1  1  1  X  X  1  1  0  X  X  1
 0  X  0  0  0 2X X+3 2X+3  X 2X+3  3  3 X+3 2X+3 2X X+3 X+3 X+3 2X+3 X+6  0 X+6 2X 2X+3 2X+6  3  3 2X+3 2X+6 X+3 2X+3 2X+6  0  X  6  X  0 2X+3  6  X 2X+6  6  X  3  3 2X+6  X  0 X+6 X+3 2X+3  X  6  X 2X+6 2X+6  0 2X+6  6  3  X  0 2X+3  3 X+3 2X+6  0 2X+6  X X+3  X X+6
 0  0  X  0  6  3  6  3  0  0 X+3 2X+6 2X+6 2X+3 X+6  X 2X  X 2X+6  X 2X+6 2X+6 X+3 X+3 2X 2X+6 X+6 2X X+6 2X  6 X+6 X+6 X+3 X+3 X+3 2X+3  6  3  6 X+3  X  6  0  6  6 X+6 2X+6  0  0 2X+3 X+6  0 X+3 2X  6  X X+6 X+3  0 X+3 2X 2X 2X+3 X+6 X+6 2X+6  6  0 2X+6  X X+3
 0  0  0  X 2X+3  0 2X X+6  X 2X 2X+3  6  3  0  6 X+6 X+6  3 2X+6 2X 2X 2X+6 2X X+6 X+6 X+3 X+3 2X+3 2X+3 2X  X  3 2X+3 X+6  X  0 X+3 X+6  6 2X+6  X  X X+6 2X+3  X  0  6  3  X  6 2X+3  0 2X  6  X 2X+3  3  0  3  6  0 2X+3  6  3 X+6 X+3 2X+6  6 2X+6 2X+6 2X 2X+6

generates a code of length 72 over Z9[X]/(X^2+3,3X) who�s minimum homogenous weight is 134.

Homogenous weight enumerator: w(x)=1x^0+324x^134+266x^135+846x^137+582x^138+252x^139+1470x^140+1056x^141+864x^142+3000x^143+2736x^144+1404x^145+3096x^146+1376x^147+396x^148+684x^149+180x^150+360x^152+210x^153+204x^155+92x^156+168x^158+60x^159+42x^161+12x^164+2x^192

The gray image is a code over GF(3) with n=648, k=9 and d=402.
This code was found by Heurico 1.16 in 3.56 seconds.